
Formal Methods in Computer-Aided Design 2025

Per-Instance Subproblem Generation for Strategy
Selection in SMT

Amalee Wilson∗ , Nina Narodytska‡ , Clark Barrett∗ , and Haoze Wu†
∗Stanford University, Stanford, USA {amalee, barrett}@cs.stanford.edu

†Amherst College, Amherst, USA hwu@amherst.edu
‡VMware Research by Broadcom, Palo Alto, USA nina.narodytska@broadcom.com

Abstract—In this paper, we investigate customizing the solving
strategy for an individual SMT problem, based solely on the
problem itself, without relying on any offline strategy tuning.
Our key insight is to generate a set of subproblems derived
from the original formula, analyze the behavior of candidate
solving strategies on these smaller, representative subproblems,
and predict which strategy will perform best on the original
formula. We demonstrate that performance on the subproblems
is frequently indicative of performance on the original for-
mula. Additionally, we introduce a novel subproblem generation
procedure that outperforms existing SMT formula partitioning
techniques for the proposed workflow. Finally, we show that on a
selection of SMT-LIB benchmarks, when our approach can make
a prediction, it can reduce the total compute time substantially.

I. INTRODUCTION

Algorithmic tuning is a standard approach for optimizing
an SMT solver’s performance on a specific problem domain.
Traditionally, tuning is regarded as an offline process, whereby
a collection of related benchmarks is used to evaluate candi-
date solving strategies (e.g., different solvers, different solver
options). The goal is either to find the best overall strategy
or to train a strategy selector that predicts the best solving
strategy for a given instance. While useful, offline tuning is not
always feasible—e.g., when similar benchmarks suitable for
tuning are unavailable. Moreover, offline tuning may require
significant time and effort, and even when this overhead can be
justified by an overall performance gain, dividing the solving
procedure into offline and online phases makes the overall
process more brittle and less automated. Motivated by these
observations, we investigate the following question in this
paper: Can we customize the solving strategy for a given SMT

This material is based upon work supported by the U.S. Department
of Energy, Office of Science, Office of Advanced Scientific Computing
Research, Department of Energy Computational Science Graduate Fellowship
under Award Number DE-SC0020347. This work was also supported by
DARPA under Agreement FA8750-24-9-1000 and by the Stanford Center for
Automated Reasoning. Disclaimer: This report was prepared as an account
of work sponsored by an agency of the United States Government. Neither
the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or usefulness of
any information, apparatus, product, or process disclosed, or represents that
its use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States Government
or any agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States Government or
any agency thereof.

problem based solely on the problem itself, without any offline
strategy tuning?

Our key idea is to view a given SMT problem as a generator
of relevant, easier subproblems and to use the generated
subproblems to evaluate solving strategies. Existing formula-
partitioning methods used in divide-and-conquer-based paral-
lel SMT solving are natural candidates for the subproblem
generation step, i.e., they can be used to partition a problem
into subproblems from which we can sample for the purpose of
tuning. The challenge with this approach, however, is that none
of the subproblems are guaranteed to be sufficiently easy to
solve. Consequently, tuning on such subproblems could require
significant effort, possibly even more than would be required
to solve the original problem itself.

To address this challenge, we propose a new subproblem
generation technique for producing subproblems of bounded
difficulty. Our key observation is that when an SMT solver
backjumps during the execution of the CDCL(T) procedure,
the subproblem corresponding to the set of decisions made
so far at the time of the backjump is known to be solvable.
Leveraging this observation, we design a procedure that either
solves the full SMT problem or generates easy subproblems
(measured by the number of conflicts required to solve the
subproblem). Our approach produces subproblems that are
significantly easier to solve than those generated by existing
formula-partitioning algorithms.

Since the generated subproblems are used to evaluate and
choose among candidate solving strategies, a natural follow-up
question is: Does a good solving strategy for the subproblems
translate to a good strategy for the original problem? We
empirically demonstrate that the answer is positive for the
subproblem-generation procedures we tested.

Building on this result, we propose an online per-instance
strategy selection methodology: given an SMT problem, ex-
tract a set of easier subproblems, rank candidate solving
strategies on those subproblems, and then tackle the original
problem based on the ranking. On a selection of SMT-LIB
benchmarks across 4 logics (QF IDL, QF LIA, QF LRA,
and QF SLIA), we demonstrate that, when our method can
successfully generate a ranking, it can reduce the total com-
putation time over a parallel portfolio approach by an average
of 27.8%.

To summarize, our contributions include:

https://doi.org/ This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD25
https://orcid.org/0000-0002-3315-815X
https://orcid.org/0000-0002-6726-775X
https://orcid.org/0000-0002-9522-3084
https://orcid.org/0000-0002-5077-144X
https://doi.org/
https://doi.org/
https://creativecommons.org/licenses/by/4.0/

• a workflow for performing per-instance strategy selection
for SMT completely online, without any offline tuning;

• a novel subproblem generation procedure that can be used
to rank solving strategies more efficiently than existing
formula-partitioning methods;

• the empirical discovery that strategy performance on
subproblems translates to performance on the original
problem for various subproblem-generation methods;

• an implementation of the proposed methodology; and
• an experimental evaluation demonstrating that the pro-

posed method can reduce total computation time.
The rest of this paper is organized as follows. Section II

and Section III cover preliminary information and related
work, respectively. Section IV introduces our strategy selection
methodology and the new subproblem generation procedure.
Section V details our implementation, and Section VI presents
our experimental evaluation. Finally, Section VII concludes the
paper and discusses directions for future work.

II. PRELIMINARIES

Logical setting We assume the standard many-sorted first-
order logic setting with the usual notions of signature, term,
and interpretation. A theory is a pair T = (Σ, I) where
Σ is a signature and I is a class of Σ-interpretations. For
convenience, we assume a fixed background theory T with
signature Σ including the Boolean sort BOOL. We further
assume that all terms are Σ-terms, that entailment (|=) is
entailment modulo T , equivalence is equivalence modulo T ,
and that interpretations are T -interpretations. A formula φ is
a term of sort BOOL and is satisfiable (resp., unsatisfiable) if
it is satisfied by some (resp., no) interpretation in I. A formula
whose negation is unsatisfiable is valid. The satisfiability
modulo theories (SMT) problem is that of determining the
satisfiability of an arbitrary formula.

CDCL(T)-based SMT solvers solve problems through the
cooperation of a Boolean satisfiability (SAT) solver and one
or more theory solvers [1]. In this framework, the SAT solver
is responsible for constructing a truth assignment M , typically
incrementally, that satisfies the Boolean abstraction of the
input formula. At any point during the run, the subset of M
consisting of decisions made by the SAT solver is called the
decision trail. As M is built, each new assignment prompts a
call to one or more theory solvers to check whether M remains
consistent with the corresponding theories. If some theory
solver discovers an inconsistency, it returns a conflict clause
(and optionally new lemmas) to the SAT solver. A conflict
clause is a disjunction of literals, valid in the theory, that is
falsified under M , while a lemma is any other heuristically-
chosen valid formula. Upon receiving a conflict clause, the
SAT solver analyzes the conflict and performs a backtrack,
removing part of the decision trail and learning the conflict
clause to prevent encountering the same conflict again. This
iterative process continues until one of two outcomes is
achieved: either M is a complete satisfying assignment and
no conflicts are detected by the theory solvers, meaning the

problem is satisfiable; or, an unrecoverable conflict is derived,
and the problem is therefore unsatisfiable.

Strategy selection is the process of choosing a solving
strategy for an SMT problem. A solving strategy is a tuple
consisting of the solver and a set of options. In the evaluation,
the solver is fixed, so we refer to the option sets as strategies.
For clarity, we try to avoid using the word “strategy” outside
of this context throughout the paper.

Subproblem generation procedures create a subproblem ϕi

of the form ϕ ∧ si, where ϕ is the original problem and si
corresponds to a specific part of ϕ’s search space. One com-
mon approach to creating subproblems is partitioning, such as
cube-and-conquer [2] and scattering [3]. When partitioning,
the goal is to produce N subproblems, each with difficulty
1/N . Typically, the disjunction ϕ1∨· · ·∨ϕN is equisatisfiable
with ϕ. In cube-and-conquer partitioning for SMT, N variables
in the Boolean abstraction of the SMT problem are selected,
and 2N cubes (i.e., conjunctions of literals) are created. The
scattering strategy produces disjoint partitions as follows. The
first partitioning formula is a cube C1. The second uses a new
cube, C2, to create the partitioning formula ¬C1 ∧C2, and so
on. The final partitioning formula is ¬C1 ∧ · · · ∧ ¬CN−1. We
compare our new subproblem generation procedure to each of
these approaches. While it is similar to the cube-and-conquer
approach in that each si is a cube, our procedure does not
attempt to evenly divide the problem.

III. RELATED WORK

Our approach is inspired and informed by several existing
lines of work.

1) Subproblem generation: Previously, the main motivation
for designing algorithms for generating subproblems from a
given SMT problem has been to improve the effectiveness
of divide-and-conquer-based SMT solving approaches [4],
[5], [6]. In that context, the original problem is partitioned
into many subproblems, each of which is solved in parallel.
While we show that solver performance on the subproblems
generated via existing partitioning algorithms does indeed
predict the performance when solving the original problem,
we elect not to use these algorithms, because the subproblems
they generate are often too difficult. We develop instead a
specialized subproblem generation procedure that efficiently
generates subproblems that are easy to solve. Note that unlike
prior work on subproblem generation, our new procedure does
not partition the problem (i.e., the disjunction of the generated
subproblems is not guaranteed to be equisatisfiable with the
original problem).

2) Per-instance strategy selection: Traditional per-instance
algorithm selection methods [7], [8], [9], [10] typically utilize
machine learning to predict the most effective algorithm for
a given problem. These methods assume the availability of
a set of training problems, which is used to train an oracle
that predicts the best solving strategy for a given problem
based on its structural characteristics (e.g., a selected set of
problem features used as the input to the oracle). We also

aim to customize the solving strategy for a given instance,
but we do not assume the availability of training problems.
Rather, we generate training problems from the given problem
as needed. Our method is also distinct from prior approaches
because it does not require distilling a set of features from a
problem (i.e., inputs to the strategy-selecting oracle), which
can be challenging.

3) Online learning: Our approach can be viewed as a
form of online learning, which has been explored in various
automated reasoning contexts. The MapleSAT solver [11], [12]
was among the first to explore such a direction. For example,
in MapleSAT, branching is formulated as a multi-armed bandit
problem. The idea is to treat each variable as an arm and
maintain its estimated reward throughout the solving. More
broadly, algorithms with adaptive components are common
in automated reasoning tools (e.g., dynamic local search
techniques [13], branching heuristics [14], [15], and restart
techniques [16]). In contrast, our method focuses on learning
high-level solving strategies instead of low-level heuristics.
There has also been work on choosing solving strategies online
when solving a sequence of related problems [17], [18]. Our
approach goes one step further by conducting online strategy
selection for solving a single problem.

The most closely related recent work is on repurposing
existing cubing algorithms to generate tuning data [19] for
solving SAT and neural network verification problems. This
paper explores a similar direction, but it is different in three
important ways: (i) we study a new general-purpose SMT
solving setting; (ii) instead of relying on existing cubing
algorithms for subproblem generation, we design a new, spe-
cialized subproblem generation procedure; and (iii) instead
of accelerating the solving of cubes in a cube-and-conquer
procedure, our approach is aimed at boosting the performance
when solving the original problem.

IV. SUBPROBLEM GENERATION FOR STRATEGY
SELECTION

In this section, we describe our methodology for using
subproblem generation for strategy selection. We start with
a top-level overview of the approach (Algorithm 1). We
then describe our new technique for subproblem generation
(Algorithm 2). We finish the section with an explanation of
how we solve subproblems and rank strategies based on the
results of solving subproblems. In future sections, we will refer
to subproblems generated using Algorithm 2 as easy-cubes or
ECubes to abbreviate.

A. Overview

Algorithm 1 takes as input a formula to be checked for
satisfiability. It then creates subproblems and uses them to rank
solving strategies for that formula. The algorithm has several
parameters, and we discuss specific ways of instantiating
them below. We start by walking through the execution of
Algorithm 1 step by step. We then discuss specific details and
design decisions.

Algorithm 1 Generation of the ranked list of solving strategies
for a given problem.

Input: ϕ, an SMT formula
Input: stratList , a list of solving strategies
Input: N ≥ 1, the number of subproblems to solve
Output: (status, rankedList)

1: res, subprobs ← makeSubproblems(ϕ,N)
2: if res ∈ {SAT ,UNSAT} then
3: return (res, [])
4: end if
5: if subprobs.size() < N then
6: return (FAIL, [])
7: end if
8: res, stratInfo ← solveSubprobs(subprobs, stratList)
9: if res ∈ {SAT ,UNSAT} then

10: return (res, [])
11: end if
12: rankedList ← makeRanking(stratInfo)
13: return (RANKED , rankedList)

Algorithm 1 is implemented outside an SMT solver. It takes
as input an SMT formula, ϕ, a list of candidate solving strate-
gies, stratList , and the number of subproblems to generate,
N . On line 1, makeSubproblems is called to generate sub-
problems from ϕ. The implementation of makeSubproblems
requires a subproblem generation procedure and optional code
to, for example, increase diversity of subproblems. A new
subproblem generation procedure is given in algorithm 2
and described in detail below, and diversification tactics are
discussed in section V-B. Because it is possible for the problem
to be solved during subproblem generation, makeSubproblems
returns a tuple containing both a status and a list of subprob-
lems. If the status is one of SAT or UNSAT , this means
that ϕ was solved during subproblem generation. In this case,
the status is returned with an empty list (lines 2-4). If fewer
than N subproblems are generated by makeSubproblems , then
the status FAIL is returned with an empty list (lines 5-7).
Otherwise, solveSubprobs is called, which attempts to evaluate
the candidate strategies in stratList on the subproblems in
subprobs . The specific implementation of solveSubprobs is
discussed in Section V. Once again, solveSubprobs returns
a tuple, because it is possible (depending, as we explain
below, on how makeSubproblems and solveSubprobs are
implemented) for the original problem to be solved during
the call to solveSubprobs . If this happens, then once again,
the status is returned with an empty list (lines 9-11). If not,
stratInfo is used in the call to makeRanking on line 12
to produce a ranked list of solving strategies according to a
ranking heuristic, and this list is returned with the RANKED
status.

Notice that there are three situations in which a ranked
list cannot be generated: when the problem is solved during
subproblem generation, when fewer than N subproblems are
generated, and when the problem is solved during subproblem

solving (lines 3, 6, and 10, respectively). In the first and last
cases, Algorithm 1 solves the problem, so producing a ranking
is no longer necessary. However, in the case that not enough
subproblems are generated, the method fails, producing nei-
ther a result nor a ranking. Each of the functions called in
Algorithm 1 can be customized to use a specific subproblem
generation procedure, different subproblem solving strategies,
or a custom ranking heuristic. We discuss each of them in turn
below.

Algorithm 2 Subproblem generation, embedded in the
CDCL(T) framework.

Input: ϕ, an SMT formula
Input: numSubprobs , the number of desired subproblems
Output: (status, subprobs)

1: subprobsMade ← 0
2: subprobs ← []
3: while True do
4: conflict ← propagate()
5: if conflict ̸= {} then
6: decisionLevel ← resolveConflict(conflict)
7: if decisionLevel < 0 then
8: return (UNSAT , [])
9: end if

10: if dumpCondition() then
11: subprobs += ϕ ∧ dumpDecisionTrail()
12: subprobsMade += 1
13: if subprobsMade == numSubprobs then
14: return (UNKNOWN , subprobs)
15: end if
16: else if abortCondition() then
17: return (UNKNOWN , subprobs)
18: end if
19: backtrack(decisionLevel)
20: else
21: if !makeDecision() then
22: return (SAT , [])
23: end if
24: end if
25: end while

B. Subproblem Generation

The goal of subproblem generation is to produce a set
of subproblems that are difficult enough to meaningfully
distinguish among the different strategies, but easy enough to
be solved relatively quickly, so as not to introduce too much
overhead. A key contribution of this paper is a new algorithm
for achieving this goal. Notice again that this is fundamentally
different from the goal of partitioning for divide-and-conquer
algorithms, discussed previously.

Algorithm 2 shows our new algorithm. Because it is im-
plemented by instrumenting an SMT solver, we have included
simplified pseudocode for a standard CDCL(T) implementa-
tion with our changes highlighted in blue. As before, we start
by walking through the execution of Algorithm 2.

In addition to the SMT formula ϕ, Algorithm 2 takes
numSubprobs as input, which specifies the desired num-
ber of subproblems that should be generated. On line 1,
subprobsMade is initialized to 0 in order to start tracking the
number of subproblems. The list of subproblems is similarly
initialized to be empty on line 2. The main changes occur
immediately before the call to backtrack on line 17. The
inserted code is guarded by a call to dumpCondition() which
is a callback function whose role is to check any conditions
that must be fulfilled before generating a subproblem. If
dumpCondition() returns true (e.g., the solver is sufficiently
“warmed up”), then a new subproblem consisting of the
conjunction of ϕ and the decisions in the decision trail is added
to subprobs , and subprobsMade is incremented (lines 11-12).
If the number of subproblems is equal to the target speci-
fied by numSubprobs , then the solver returns UNKNOWN
(signaling that the subproblem generation did not solve the
problem) and the list of generated subproblems (lines 13-
14). Otherwise, if some abortCondition() holds (e.g., some
time limit is reached), then UNKNOWN is returned to-
gether with whatever subproblems have been generated so far.
We discuss specific instantiations of dumpCondition() and
abortCondition() in the next section.

Notice that solving is unperturbed unless the requested
number of subproblems is created or the abort condition
holds. The solver can simply solve the problem as usual and
return SAT or UNSAT (lines 8 and 22) if the conditions
on lines 13 and 16 are never met. This behavior is important
because it allows the instrumented SMT solver to potentially
solve the original formula during subproblem generation. Its
importance will become clearer in the discussion of imple-
mentation details. Briefly, though, the ability to solve the
problem avoids wasting time tuning on subproblems for SMT
formulas that are easy to solve. Conversely, it is also important
to limit the amount of work done (via abortCondition())
during subproblem generation so as not to introduce too much
overhead for more difficult problems.

The key insight of Algorithm 2 is that a subproblem can
be generated from a discarded portion of the search space. At
line 10, it is known that the current state of the decision trail
results in a conflict. At the same time, the trail has not yet
been backtracked, so it can be used to generate a subproblem.
Intuitively, the generated subproblem should be easy to solve
because we know it leads to a conflict. The subproblem should
also require some nontrivial effort from the solver, since a
conflict had to be produced.

It is important to note that while the generated subproblems
are designed to be efficiently solvable, the actual runtime
performance of the candidate solving strategies on those sub-
problems might vary significantly. In addition to the intrinsic
differences in search patterns induced by different solving
strategies, SMT solvers are known to exhibit high sensitivity
to formula perturbations in some cases [20]. Adding the
decision trail to the original problem may, therefore, result
in unexpected runtimes for subproblem solving. Despite these
caveats, we show in Section VI that, in practice, subproblems

generated using Algorithm 2 are frequently both efficient to
solve and helpful for selecting good strategies.

Finally, we highlight a few features of Algorithm 2 that
contribute to its utility for selecting solving strategies when
incorporated into a tuning approach. First, we note that when
algorithm 2 is used for makeSubproblems in algorithm 1, it
can be beneficial to vary the options to provide a greater di-
versity of subproblems. Additionally, through numSubprobs ,
Algorithm 2 allows flexibility in the number of subprob-
lems that are created. This flexibility can be used to adjust
the execution time of subproblem generation to balance it
with the other stages of the algorithm. dumpCondition()
can also be used to help balance execution time, but more
generally, it is the main way that this algorithm enables fine-
grained control over subproblem generation. Depending on
how dumpCondition() is defined, it can affect subproblem
diversity, the time required to generate subproblems, and
other characteristics of the subproblem generation process.
We discuss various implementations of dumpCondition() in
the next section. Lastly, notice that because subproblems are
generated by decisions that led to a conflict, they have the
additional characteristic that they are always unsatisfiable.
Our evaluation shows that tuning on only these unsatisfiable
subproblems can be effective. Intuitively, it also makes sense,
as unsatisfiable problems require the solver to cover the entire
search space, and if the solver can do that efficiently, it should
also be able to solve satisfiable instances quickly.

C. Solving Subproblems

The solveSubprobs routine takes as input a list of subprob-
lems and a list of strategies. Its goal is to capture informa-
tion about the performance of the different strategies on the
subproblems. There are different ways this can be done. For
simplicity, we simply run all subproblems using all strategies
using some given time limit. When using Algorithm 2 for
subproblem generation, solutions to subproblems can never
lead directly to solutions to the original problem because: (i)
they cannot, by construction, be satisfiable, and (ii) they do not
fully partition the problem, so even if they are all UNSAT , we
can’t conclude anything about the original problem. However,
when the disjunction of the subproblems is equisatisfiable with
the original formula, as with formula-partitioning procedures,
it is possible to solve the original problem based on the results
of the subproblems. In this case, if any subproblem returns
SAT , we can immediately return with status SAT . Similarly,
if all generated partitions are solved and found to be UNSAT ,
then we can immediately return with status UNSAT . When
the status of the original problem cannot be deduced based
on the result of solving its subproblems, we return the status
UNKNOWN together with the performance data obtained by
running all the strategies on all the subproblems.

D. Subproblem-based Strategy Ranking

Algorithm 1 is parameterized by the makeRanking method.
We propose ranking solving strategies based on the number of
subproblems solved and breaking ties using the total runtime

on the subproblems that were solved (a smaller total runtime is
better). Note that ranking on time alone could result in solving
strategies that solve fewer subproblems being placed higher
in the ranked list. Since our priority is solving the original
problem, we prioritize solving subproblems in our ranking.

V. IMPLEMENTATION DETAILS

We implemented the subproblem generation method (Al-
gorithm 2) by extending CVC5’s internal SAT solver. Our
prototype of Algorithm 1 was implemented in Python and
makes subprocess calls to CVC5 for subproblem generation
(makeSubproblems) and solving (solveSubprobs). Each strat-
egy in stratList is a set of command-line options for CVC5.
In this section, we discuss specific design choices we made
during the implementation.

A. The Dump and Abort Conditions

The dumpCondition() and abortCondition() methods in
Algorithm 2 are configurable via command-line options in
our implementation. dumpCondition() implements a delay
before subproblem generation is enabled. The motivation is to
ensure a sufficient amount of meaningful activity has occurred
before producing subproblems. abortCondition() also relies
on tracking time. In our evaluation, it returns true whenever it
has been more than five seconds since the start of the current
invocation of Algorithm 2.

B. Making Subproblems

We implement two versions of makeSubproblems . The first
is based on Algorithm 2 and the other on standard formula-
partitioning methods. In the first implementation, Algorithm 2
is invoked repeatedly to generate a small number of sub-
problems. Each call uses one of the strategies in stratList
and requests N/stratList .size() subproblems. Using the op-
tions from each of the strategies while generating subprob-
lems helps generate diverse subproblems while mitigating the
risk that subproblems are biased toward any single strategy.
To further aid diversity, each call sets the time delay in
dumpCondition() to a random time between 1.5 and 2.5
seconds. Importantly, only unique subproblems are used for
tuning. If subproblem generation ever produces identical sub-
problems, the duplicate is discarded.

After this first round of generating subproblems, if we do
not yet have N subproblems, we enter another loop. In this
loop, we randomly pick a strategy and use it to generate
N/stratList .size()+1 subproblems (we add one to increase the
chances of getting new subproblems). As before, duplicates of
any previously generated subproblem are removed. Whenever
a strategy fails to produce any new subproblems, it is no
longer eligible to be picked. The loop continues until N
subproblems are generated or until all strategies have been
deemed ineligible.

In the second mode where partitioning is used, we use
the built-in partitioning capabilities of CVC5. Depending on
the run and the partitioning procedure used, the number of
subproblems generated may not match N exactly. If fewer

TABLE I: Options used for each logic.

Logic (Alias) Options

QF LRA,
QF RDL

(A) --miplib-trick --miplib-trick-subs=4 --use-approx
--use-soi --lemmas-on-replay-failure
--replay-early-close-depth=4 --replay-lemma-reject-cut=128
--replay-reject-cut=512 --unconstrained-simp
(B) --no-restrict-pivots --use-soi --new-prop
--unconstrained-simp
(C) defaults

QF LIA,
QF IDL

(D) --miplib-trick --miplib-trick-subs=4 --use-approx
--lemmas-on-replay-failure --replay-early-close-depth=4
--replay-lemma-reject-cut=128 --replay-reject-cut=512
--unconstrained-simp --pb-rewrites --ite-simp
--simp-ite-compress --no-use-soi
(E) --miplib-trick --miplib-trick-subs=16 --use-approx
--lemmas-on-replay-failure
--replay-early-close-depth=4 --replay-lemma-reject-cut=16
--replay-reject-cut=64 --unconstrained-simp --pb-rewrites
--ite-simp --simp-ite-compress --use-soi
(C) defaults

QF SLIA
(F) --strings-exp --no-jh-rlv-order
(G) --strings-exp --strings-fmf --no-jh-rlv-order

than N are generated, we just exit, and Algorithm 1 fails. If
more than N subproblems are generated, then N of them are
randomly selected. For partitioning runs, CVC5 is limited to
60 seconds and is called using the default options.

C. Solving Subproblems and Ranking

Our implementation of solveSubprobs attempts to solve
each subproblem in subprobs with each of the strategies in
stratList using CVC5. A solving timeout of 5 seconds is
enforced for each attempt at solving a subproblem. The re-
turned stratInfo is a dictionary mapping the solving strategies
to a tuple describing how many subproblems were solved
using each solving strategy and the cumulative runtime for
that solving strategy over the subproblems. Note that having
more strategies in stratList may increase the odds of finding
the best solving strategy, but it comes at the cost of running
each subproblem an additional time. Rankings are calculated
in makeRanking based on the ranking heuristic described in
Section IV-D.

VI. EXPERIMENTAL EVALUATION

In this section, we report on experiments designed to
evaluate our approach. The main questions we investigate are:

• How does Ecubes compare to subproblem generation
methods based on partitioning? [It consistently ranks
more problems]

• Does solving strategies’ performance on subproblems
predict their performance on the original problem? [Yes
for all tested subproblem generation methods]

• Can the proposed online strategy selection method reduce
computational time? [In many cases]

A. Experimental Setup

We consider quantifier-free benchmarks from the following
logics in the SMT-LIB benchmark library: QF LRA, QF LIA,
QF RDL, QF IDL, and QF SLIA. The first four were selected

because they have been studied in previous work on partition-
ing [4], and specific solving strategies for those benchmarks
have been published in the context of portfolio solving [21].
We added QF SLIA because efficient string solving has been
of particular practical interest recently [22].

For candidate solving strategies, we start with expert-
selected options for each logic found in CVC5’s competition
script. These options were expanded by varying the decision
heuristic and including default options, which was an effective
portfolio technique for QF LRA, QF LIA, QF RDL, and
QF IDL in [21]. We extend the method of varying the decision
heuristic for expert-selected options to the QF SLIA logic.
Concretely, we consider the Cartesian product of the option
sets shown in Table I and CVC5’s three decision heuristics:
justification, stop-only, and internal. In total, there are six
solving strategies (option sets) for QF SLIA, and nine for the
other benchmark sets. As shown in Figure 1, each of these
solving strategies is effective for many problems in each logic,
with each strategy being the best single strategy for some
portion of the benchmarks.

All experiments were run on a cluster with 48 nodes running
Ubuntu 20.04 LTS, each with one AMD Ryzen 9 7950X CPU
with 16 cores and just under 128 GB of RAM (127940MB).

We start by walking through a detailed analysis of our
methods on the QF LRA benchmarks (in the next three
subsections); we then broaden our scope to include other
logics. We focus first on a single logic to keep the analysis
simple and understandable, and we choose these benchmarks
because the majority of prior work on subproblem generation
includes and often focuses on QF LRA benchmarks.

B. Comparison of Techniques for Subproblem Selection

We compare three subproblem generation methods: The
first method is the one based on Algorithm 2 and detailed
in Section V-B. Recall that we call this method easy-cubes,
or ECubes for short. The others are partitioning algorithms
implemented in CVC5 [4]. One is a cube-and-conquer based
approach that builds cubes using literals from the decision
trail. We call this the decision cube method, or Dcube for
short. The last method is based on scattering using literals
from the decision trail. We call this Dscatter.

The metric used for comparison is rankability. A problem
is rankable for a particular subproblem generation method
if running Algorithm 1 using that method does not return
FAIL as a status and if the top strategy solves at least three
subproblems (solving fewer than three suggests there is not
enough data to meaningfully distinguish the strategies).

SMT-LIB contains 1753 QF LRA problems. Of these, 1728
can be solved by at least one of the solving strategies. And
of these, 517 are not trivially solved during subproblem
generation (using Ecubes). We thus compare our subproblem
generation methods on these remaining 517 benchmarks. We
ran Algorithm 1 on each benchmark using several variations of
our subproblem generation methods using an overall timeout
of 1200s for each run.

Fig. 1: This graph shows the proportion of problems that each option set can solve in each logic and additionally highlights the
proportion of problems for which each option set is the best. Option sets are of the form XN where X is the options alias in
Table I and N corresponds to a decision heuristic: justification, stop-only, and internal are aliased as 1, 2, and 3, respectively.

The results are shown in Figure 2. The x-axis shows each
subproblem generation procedure we tested. The three main
approaches are parameterized by the number of subproblems
generated (the first number in parentheses) and the number
of subproblems used (the second number). Recall that for
partitioning methods, we may generate more subproblems than
we use. In this case, we randomly sample from the generated
subproblems (results using random sampling are highlighted
in the figure as a reminder). For example, Ecube (18) 18
generates 18 easy-cubes and uses all of them, whereas Dcube
(256) 27, generates 256 decision cubes and randomly selects
27 for tuning. The y-axis shows the number of problems
successfully ranked. The Ecube variations result in the largest
number of successful rankings, while Dscatter variants pro-
duce the fewest successful rankings. The results show that our
new subproblem generation algorithm based on Algorithm 2
is the most effective for ranking our QF LRA strategies on
these benchmarks. Notice that the partition-based techniques
struggle because the produced subproblems are too difficult,
not because there are too few partitions being generated. For
example, Dcube (256) 18 ranks more problems than Dcube
(16) 16, even though creating 256 decision-cube partitions is
more likely to fail than creating 16.

We next evaluate the difficulty of the subproblems generated
by different methods. Recall that one goal is to produce
relatively easy subproblems so that tuning does not take too
long. Figure 3 visualizes the time required to solve all of the
subproblems generated by each of the top four methods from
Figure 2. Recall that we solve each subproblem with all 9
solving strategies, each with a 5s time limit. The horizontal

Fig. 2: Bar plot of the number of QF LRA problems for which
a strategy ranking can be produced using various subproblem
selection techniques.

line in the boxplot is the median, the box itself represents
the values in the lower to upper quartiles, and the whiskers
extend to show the full range of the data. Figure 3 shows
that the typical time to solve all subproblems is much lower
when the subproblems were generated using the easy-cubes
procedure than when they were generated using decision-cube

TABLE II: Comparison of the number of problems solved
by top-ranked strategies to the expected number of problems
solved by selecting a random solving strategy.

Technique
Common All Ranked

Top Rank
Solved

Random
Solved

Top Rank
Solved

Random
Solved

Ecube (18) 18 119/133 103.3/133 181/206 161.2/206
Dcube (256) 18 118/133 103.3/133 152/175 135.7/175
Ecube (27) 27 119/133 103.3/133 184/212 165.9/212

Dcube (256) 27 117/133 103.3/133 143/174 135.9/174

Fig. 3: Box plot showing the time required to solve all
subproblems produced with a given subproblem selection
technique.

partitioning, with the median of Dcube (256) 18 being almost
double that of Ecube (18) 18.

C. Evaluation of the predictive power of rankings

So far, we have seen that, for QF LRA, the Ecube method
not only produces rankings more often, but also does so faster.
However, it remains to seen whether these rankings are useful
for predicting a good strategy for the original problem. We
evaluate this next. Concretely, we evaluate how often the top-
ranked solving strategy can solve the original problem.

Table II shows the number of instances that are solved when
using the top-ranked strategy for each subproblem selection
technique. It also shows the expected number of instances
solved by choosing a random strategy. “Common” reports
results on the 133 benchmarks ranked by all four methods,
whereas “All Ranked” reports results on all benchmarks
that each method was able to rank. Regardless of how the
subproblems are generated, the ranking successfully selects
a good solving strategy with substantially higher accuracy
than a random choice. This result shows that tuning on
generated subproblems is a promising technique for strategy
selection. Since each subproblem generation technique results

in a similar number of solved benchmarks, we conclude that
the efficiency gain of Ecube (as shown in Section VI-B) does
not come at the cost of reduced predictive power.

D. Comparison of online tuning with parallel portfolio

We now determine whether the per-instance strategy selec-
tion method could be used to improve solving efficiency in
practice. We consider the following approach: first tune using
Algorithm 1 and then iteratively attempt to solve the problem
using the ranked solving strategies in order with a 20-minute
per-strategy timeout. We compare the total computational time
of this approach with that of a parallel portfolio solving
method, where all strategies are attempted simultaneously
(with a 20 minute timeout). The total compute time of our
approach is computed as the sum of the time to produce sub-
problems, the time to solve each of the subproblems with all
candidate solving strategies, and the time to try each strategy
in the ranked list until the problem is solved. This means
assigning a higher rank to a solving strategy that will not solve
the problem is penalized because 1200 seconds will be added
to the total time for each failed attempt. Note that each of the
6-9 option sets for each logic is the best strategy for some
problems, as shown in Figure 1. While including ineffective
strategies would clearly reduce the performance of the parallel
portfolio, doing so could also sabotage our strategy: every
option is considered during tuning, and including ineffective
strategies could introduce noise into the ranking heuristic.
We use the Ecube (18) 18 subproblem selection technique
because it achieves a good balance between ranking many
problems effectively and minimizing tuning time, as seen in
prior subsections.

Given a set of problems and limited computational re-
sources, online per-instance tuning and the parallel portfolio
approach represent two distinct philosophies for utilizing those
resources to tackle the problems. A parallel portfolio uses all
available workers to attempt the same problem in parallel using
different strategies with the hope that one strategy will solve it
quickly. In contrast, online tuning solves a given problem with
just one strategy at a time, but computational resources are
spent on solving subproblems to choosing the strategy order.

We select benchmarks that (i) take at least 90 seconds to
solve with the best strategy; (ii) are successfully solved by
at least one strategy; and (iii) are successfully ranked using
the Ecube (18) 18 method. We focus on harder benchmarks
because our method is intended for solving problems where
spending the resources required for tuning is justifiable. Note
that easy benchmarks are likely to be solved during subprob-
lem generation, so it makes sense to focus on harder problems.

Table III reports the total compute time of the two configu-
rations across benchmark families, with the number of selected
instances per family shown in the first column followed by, in
parentheses, the number excluded due to each of (i), (ii), and
(iii) above, respectively. Even though only three benchmarks
remain in QF RDL after the selection procedure, we include
it for transparency.

TABLE III: Comparison of the total compute time required
by a parallel portfolio and the Ecube (18) 18 tuning approach
on selected problems from different benchmark sets. The ag-
gregate improvement is reported with the per-instance median
improvement in parentheses.

Logic
Instances (Excluded)

Tactic CPU
Time (s)

Improvement
(Median)

QF IDL
73 (1745/463/247)

Parallel Portfolio 186123 32.5%
(52.4%)Ecube (18) 18 125609

QF SLIA
51 (81661/2281/402)

Parallel Portfolio 87451 9.8%
(25.0%)Ecube (18) 18 78845

QF LRA
23 (1654/25/51)

Parallel Portfolio 65248 50.2%
(77.2%)Ecube (18) 18 32470

QF LIA
15 (12823/334/134)

Parallel Portfolio 47951 18.8%
(36.6%)Ecube (18) 18 38934

QF RDL
3 (209/36/7)

Parallel Portfolio 9337 57.3%
(1.5%)Ecube (18) 18 3987

Fig. 4: Histogram of the rank of the first strategy to solve the
problem using Ecube (18) 18 for the benchmarks reported in
Table III.

Across all considered benchmark sets, our method results in
an overall improvement in total compute time, ranging from
9.8% for QF SLIA to 50.2% for QF LRA. The per-instance
median improvement demonstrates that for the majority of
instances, total compute time is substantially reduced using
our approach. Figure 4 shows the rank of the first strategy that
solved the problem for each logic. The majority are solved
by the top ranked strategy, as expected from the results in
the previous subsection. Figure 5 shows the per-instance total
compute time for the QF LRA benchmarks. The scatter plot
suggests that for these benchmarks, many benchmarks greatly
reduce total compute time, while only a few use a modest
amount of additional compute.

As shown in Table II, there are cases where our ranking
method fails to put a successful strategy at the top, despite
its overall effectiveness. Further analysis reveals that for those
cases, the performance of the top-ranked strategy during tuning
typically does not differ significantly from those of the other

Fig. 5: Scatter plot of the total compute time of Ecube (18)
18 versus parallel portfolio.

TABLE IV: Comparison of the number of problems solved
by top-ranked strategies to the expected number of problems
solved by selecting a random solving strategy, when using
stricter ranking criteria.

Technique
Common All Ranked

Top Rank
Solved

Random
Solved

Top Rank
Solved

Random
Solved

Ecube (18) 18 60/62 49.6/62 136/149 117.8/149
Dcube (256) 18 59/62 49.6/62 136/144 112.1/144
Ecube (27) 27 60/62 49.6/62 144/166 130.4/166

Dcube (256) 27 58/62 49.6/62 126/143 111.8/143

strategies. Indeed, when we filter out benchmarks for which all
strategies solve the same number of subproblems, the ability
of our method to predict a strategy that will solve the original
problem jumps—attaining an accuracy of over 90%, as shown
in Table IV. Future work could consider how to best leverage
this observation. For example, it could be beneficial to generate
additional subproblems when the current set fails to produce
a meaningful difference in scores for the candidate solving
strategies.

VII. CONCLUSION AND FUTURE WORK

In this paper, we demonstrated that strategy performance
on a given SMT formula can be predicted from strategy per-
formance on its easier subproblems. We showed that the cor-
relation holds for existing subproblem generation methods—
formula partitioning methods used for divide-and-conquer-
styled parallel solving—as well as for a novel subproblem
generation method. The new method can produce a ranking of
solving strategies more efficiently than existing methods with-
out sacrificing the quality of the ranking. We then proposed a

solving methodology that first performs per-instance strategy
selection online and then solves the instance with the ranked
strategies. We showed that using this approach can reduce total
compute time when compared to a portfolio approach that
directly tries all strategies in parallel. Our paper is the first to
demonstrate the feasibility of moving meta-algorithmic design
completely online for SMT solving.

While our new subproblem generation method outperforms
existing partitioning-based methods in our setting, there are
still many challenging instances for which subproblems cannot
be generated, as the complexity of the problem stems from
theory reasoning rather than from the Boolean structure, or
for which rankings cannot be produced because not enough
subproblems are solved. This suggests it could be interesting
to develop theory-specific subproblem generation methods or
find ways to adjust the difficulty of subproblems by adding
additional lemmas. Other future directions include 1) selecting
among multiple solvers; 2) exploring a much larger pool of
strategies using stochastic optimization techniques; and 3)
validating the efficacy of the proposed workflow for other SMT
solvers and theories.

REFERENCES

[1] R. Nieuwenhuis, A. Oliveras, and C. Tinelli, “Solving SAT and SAT
modulo theories: From an abstract Davis–Putnam–Logemann–Loveland
procedure to dpll(t),” J. ACM, vol. 53, no. 6, p. 937–977, nov 2006.

[2] M. J. H. Heule, O. Kullmann, S. Wieringa, and A. Biere, “Cube and
conquer: Guiding CDCL SAT solvers by lookaheads,” in Hardware and
Software: Verification and Testing, K. Eder, J. Lourenço, and O. Shehory,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 50–65.

[3] A. E. J. Hyvärinen, T. Junttila, and I. Niemelä, “A distribution method
for solving sat in grids,” in Theory and Applications of Satisfiability
Testing - SAT 2006, A. Biere and C. P. Gomes, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2006, pp. 430–435.

[4] A. Wilson, A. Noetzli, A. Reynolds, B. Cook, C. Tinelli, and C. W.
Barrett, “Partitioning strategies for distributed smt solving.” in FMCAD,
2023, pp. 199–208.

[5] A. E. Hyvärinen, M. Marescotti, and N. Sharygina, “Search-space
partitioning for parallelizing smt solvers,” in Theory and Applications of
Satisfiability Testing–SAT 2015: 18th International Conference, Austin,
TX, USA, September 24-27, 2015, Proceedings 18. Springer, 2015, pp.
369–386.

[6] A. E. J. Hyvärinen, M. Marescotti, and N. Sharygina, “Lookahead in
partitioning SMT,” in 2021 Formal Methods in Computer Aided Design
(FMCAD), 2021, pp. 271–279.

[7] L. Xu, F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Satzilla: portfolio-
based algorithm selection for sat,” Journal of artificial intelligence
research, vol. 32, pp. 565–606, 2008.

[8] J. Scott, A. Niemetz, M. Preiner, S. Nejati, and V. Ganesh, “Machsmt:
A machine learning-based algorithm selector for smt solvers,” in Inter-
national Conference on Tools and Algorithms for the Construction and
Analysis of Systems. Springer, 2021, pp. 303–325.

[9] L. Xu, H. Hoos, and K. Leyton-Brown, “Hydra: Automatically configur-
ing algorithms for portfolio-based selection,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 24, no. 1, 2010, pp. 210–216.

[10] R. Singh, J. P. Near, V. Ganesh, and M. Rinard, “Avatarsat: An auto-
tuning boolean sat solver,” Technical Report MIT-CSAIL-TR-2009-039.
Massachusetts Institute of Technology, Tech. Rep., 2009.

[11] J. H. Liang, V. Ganesh, P. Poupart, and K. Czarnecki, “Learning
rate based branching heuristic for SAT solvers,” in Theory and
Applications of Satisfiability Testing - SAT 2016 - 19th International
Conference, Bordeaux, France, July 5-8, 2016, Proceedings, ser.
Lecture Notes in Computer Science, N. Creignou and D. L. Berre,
Eds., vol. 9710. Springer, 2016, pp. 123–140. [Online]. Available:
https://doi.org/10.1007/978-3-319-40970-2 9

[12] J. H. Liang, C. Oh, M. Mathew, C. Thomas, C. Li, and V. Ganesh,
“Machine learning-based restart policy for cdcl sat solvers,” in Theory
and Applications of Satisfiability Testing–SAT 2018: 21st International
Conference, SAT 2018, Held as Part of the Federated Logic Conference,
FloC 2018, Oxford, UK, July 9–12, 2018, Proceedings 21. Springer,
2018, pp. 94–110.

[13] C. M. Li, W. Wei, and H. Zhang, “Combining adaptive noise and look-
ahead in local search for sat,” in Theory and Applications of Satisfiability
Testing–SAT 2007: 10th International Conference, Lisbon, Portugal,
May 28-31, 2007. Proceedings 10. Springer, 2007, pp. 121–133.

[14] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik,
“Chaff: Engineering an efficient sat solver,” in Proceedings of the 38th
annual Design Automation Conference, 2001, pp. 530–535.

[15] M. S. Cherif, D. Habet, and C. Terrioux, “Combining vsids and chb
using restarts in sat,” in 27th International Conference on Principles
and Practice of Constraint Programming, 2021.

[16] A. Biere, “Adaptive restart strategies for conflict driven sat solvers,”
in Theory and Applications of Satisfiability Testing–SAT 2008: 11th
International Conference, SAT 2008, Guangzhou, China, May 12-15,
2008. Proceedings 11. Springer, 2008, pp. 28–33.

[17] N. Pimpalkhare, F. Mora, E. Polgreen, and S. A. Seshia, “Medleysolver:
online smt algorithm selection,” in Theory and Applications of Satis-
fiability Testing–SAT 2021: 24th International Conference, Barcelona,
Spain, July 5-9, 2021, Proceedings 24. Springer, 2021, pp. 453–470.

[18] H. Wu, C. Hahn, F. Lonsing, M. Mann, R. Ramanujan, and C. Barrett,
“Lightweight online learning for sets of related problems in automated
reasoning,” in 2023 Formal Methods in Computer-Aided Design (FM-
CAD). IEEE, 2023, pp. 1–11.

[19] H. Wu, C. Barrett, and N. Narodytska, “Cubing for tuning,” 2025.
[Online]. Available: https://arxiv.org/abs/2504.19039

[20] Y. Zhou, J. Bosamiya, Y. Takashima, J. Li, M. Heule, and B. Parno,
“Mariposa: Measuring smt instability in automated program verifica-
tion,” in 2023 Formal Methods in Computer-Aided Design (FMCAD),
2023, pp. 178–188.

[21] C. Barrett, P.-W. Chen, B. Cook, B. Dutertre, R. B. Jones, N. Le,
A. Reynolds, K. Sheth, C. Stephens, and M. W. Whalen, “Smt-d: New
strategies for portfolio-based smt solving,” in 2024 Formal Methods in
Computer-Aided Design (FMCAD), 2024, pp. 1–10.

[22] J. Backes, P. Bolignano, B. Cook, C. Dodge, A. Gacek, K. Luckow,
N. Rungta, O. Tkachuk, and C. Varming, “Semantic-based automated
reasoning for aws access policies using smt,” in 2018 Formal Methods
in Computer Aided Design (FMCAD). IEEE, 2018, pp. 1–9.

https://doi.org/10.1007/978-3-319-40970-2_9
https://arxiv.org/abs/2504.19039

	Introduction
	Preliminaries
	Related Work
	Subproblem generation
	Per-instance strategy selection
	Online learning

	Subproblem Generation for Strategy Selection
	Overview
	Subproblem Generation
	Solving Subproblems
	Subproblem-based Strategy Ranking

	Implementation Details
	The Dump and Abort Conditions
	Making Subproblems
	Solving Subproblems and Ranking

	Experimental Evaluation
	Experimental Setup
	Comparison of Techniques for Subproblem Selection
	Evaluation of the predictive power of rankings
	Comparison of online tuning with parallel portfolio

	Conclusion and Future Work
	References

