
Learning to Generate Industrial SAT Instances

Haoze Wu
Department of Computer Science

Stanford University
Stanford, CA 94305

U.S.A.
haozewu@stanford.edu

Raghuram Ramanujan
Dept. of Mathematics and Computer Science

Davidson College
Davidson, NC 28035

U.S.A.
raramanujan@davidson.edu

Abstract

In this paper, we present SATGEN, the first implicit model
that generates Boolean Satisfiability formulas which resem-
ble instances that arise in real-world industrial settings. Our
approach uses unsupervised machine learning techniques to
create new formulas by mimicking the structural properties
of a given input formula Φ. We proceed in two phases: first,
we construct the Literal Incidence Graph (LIG) of Φ. This is
used by a Generative Adversarial Network to generate new
LIGs that exhibit graph-theoretic properties similar to those
of the LIG of Φ. In the second phase, we extract a formula Φ′

whose LIG would correspond to the generated graph. Gener-
ating such a formula is equivalent to finding a minimal clique
edge cover of the given graph, which we tackle efficiently
using a greedy hill-climbing algorithm. We verify experimen-
tally that our approach generates formulas that closely resem-
ble a given real-world SAT instance, as measured by a range
of different metrics.

1 Introduction

The propositional Boolean Satisfiability problem (SAT) is
the canonical NP-complete problem and is of central impor-
tance to computer science. Developing and evaluating prac-
tical SAT-solvers relies on extensive empirical testing on a
diverse suite of benchmark problems. SAT instances that
arise in a variety of real-world settings, such as circuit ver-
ification and planning, form a key component of such test
sets and have very different structural properties from in-
stances that are synthetically generated (Ansótegui, Bonet,
and Levy 2009). However, the supply of such “industrial”
SAT problems is limited. Indeed, the problem of develop-
ing an instance generator that could create arbitrarily many
artificial SAT problems that display the same characteristics
as their real-world counterparts has been identified as one
of ten key challenges in propositional reasoning and search
(Selman, Kautz, and McAllester 1997). We study this very
problem in this paper.

2 The SATGEN System

Prior work in the area of pseudo-industrial SAT instance
generation has focused on developing parameterized mod-
els that capture some specific graph-theoretic property, like

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

modularity (Giráldez-Cru and Levy 2015) or the presence of
scale-free structures (Giráldez-Cru and Levy 2017). While
such prescribed models permit theoretical analysis, they do
not simultaneously capture all the essential characteristics
of industrial SAT formulas. In this work, we take an im-
plicit modeling approach instead, and present a system that
captures a wide range of essential (possibly yet unknown)
graph-based features without specifically targeting any one
of them. Our SATGEN system takes as input a real-world
industrial SAT instance Φ and generates new formulas that
mimic the structure of the original. It works in four stages:

1. We first extract the Literal Incidence Graph (LIG) of Φ. In
this graph G, each node corresponds to a literal in Φ, with
edges connecting two literals that co-occur in the same
clause in Φ.

2. We then train a Generative Adversarial Network (GAN)
using the NetGAN algorithm (Bojchevski et al. 2018), to
model this graph’s topology.

3. The learned model is used to generate a new LIG G′, that
exhibits similar structural properties to G.

4. Finally, we extract a new SAT formula Φ′ from G′ using
a greedy hill-climbing approach.

We note that step 4 above presents a difficulty: an LIG
does not uniquely map to a SAT formula for it only captures
which literals co-occur in a clause, and not what the clauses
themselves are. For instance, the formulas Φ1 = (v1 ∨ v2 ∨
¬v3) and Φ2 = (v1∨v2)∧ (v2∨¬v3)∧ (v1∨¬v3) have the
same LIG. However, imposing some sensible constraints —
specifically, that the generated formula cannot contain dupli-
cated clauses, unit clauses, or subsumed clauses — allows us
to extract reasonable SAT formulas given an LIG, a problem
that is equivalent to finding a minimal clique edge cover of
the generated graph (proof omitted).

However, not all minimal clique edge covers correspond
to desirable formulas. We require that the generated formula
Φ′ contain the same number of clauses as the original for-
mula Φ, while also matching the diversity of clause lengths
exhibited by Φ (which often follows a power-law distribu-
tion in real-world formulas). The following result (proof
omitted) suggests a way towards achieving this goal.

Lemma 1. In a SAT formula Φ, for any clause C of length
k (k > 2), there exist three clauses C1, C2, and C3, each of

Proceedings of the Twelfth International
Symposium on Combinatorial Search (SoCS 2019)

206

clauses LIG Clust. LIG Mod. VCG Mod. αv λv αc λc

ssa2670-141 377 0.351 0.559 0.647 4.84 0.265 3.56 0.783
SATGEN 377 0.340 0.542 0.632 4.64 0.183 5.28 1.012

PS 352 0.464 0.584 0.731 4.39 0.210 4.07 0.693

CA 375 0.247 0.499 0.629 7.06 0.394 - -

Table 1: Median clustering coefficients, modularities, and estimated degree distribution parameters for variables (αv , λv) and
clauses (αc, λc) of formulas generated to mimic benchmark ssa2670-141, using three different generators. For each property,
the model with the closest statistics to the original formula is identified in boldface.

length k − 1, such that if we replace C with C1 ∧ C2 ∧ C3

in Φ, the LIG of Φ remains unchanged.

Specifically, we start by enumerating all cliques in the
generated LIG that are of size smaller than some n (we set
n = 15 as the real-world formulas we considered rarely
contained longer clauses). We then use greedy hill-climbing
over the set of generated cliques to find a minimal clique
edge cover. This edge cover is then repeatedly expanded by
breaking down a clique chosen uniformly at random accord-
ing to the procedure described in Lemma 1, until the desired
number of clauses is reached.

3 Experiments and Results

We evaluated SATGEN on industrial SAT benchmarks from
SATLIB (Hoos and Stützle 2000) and past SAT competi-
tions. We used the SatElite pre-processor (Eén and Biere
2005) to remove subsumed, unit, and duplicated clauses
from these formulas. The number of nodes in the LIGs that
we trained on ranged from 182 to 2244, with between 919
to 12582 edges. We compare the properties of the formu-
las generated by SATGEN to those generated by two other
pseudo-industrial SAT formula generators: the Community
Attachment (CA) model that generates formulas with a de-
sired modularity (Giráldez-Cru and Levy 2015) and the
Popularity-Similarity (PS) model that generates formulas
with scale-free structures (Giráldez-Cru and Levy 2017). In
the interests of space, we only present our results on one
instance — ssa2670-141, a circuit fault analysis bench-
mark — though similar results were obtained with other for-
mulas as well. Benchmark ssa2670-141 originally con-
tained 986 variables and 2315 clauses. After pre-processing
with SatElite, the formula is reduced to 91 variables and 377
clauses. The clause lengths range from 2 to 8 and the average
clause length is about 3. The LIG of the benchmark contains
182 nodes and 1062 edges. Table 1 summarizes our results.
The statistics shown for each generator represent the median
of measurements made on 100 generated formulas.

Overall, SATGEN is the only generator that consistently
captures all of the key graph theoretic properties of the orig-
inal formula. Since SATGEN learns from the LIG of the orig-
inal formula, it is not surprising that the formulas it gen-
erates have a similar LIG clustering coefficient and modu-
larity statistics as the original. Interestingly, however, those
formulas also match the statistics of the original formula
when other graph projections, such as the Variable-Clause
Graph (VCG), are employed. Table 1 also includes measures
of scale-free structure exhibited by the variable degrees (αv

and λv) and clause degrees (αc and λc) in the VCG of the
generated formulas. The definitions of these measures are
found in (Ansótegui, Bonet, and Levy 2009). While not as
effective as PS, which directly fits these statistics, the for-
mulas generated by SATGEN nonetheless capture scale-free
characteristics well. We finally also note that SATGEN gen-
erates diverse formulas: the average clause overlap between
a generated formula and the original is only 14%, while the
average clause overlap between two generated formulas is
only 12%.

4 Future Work and Conclusions
In this paper, we introduced SATGEN which, in contrast to
previous pseudo-industrial SAT formula generators such as
the CA and PS models, captures all the graph-based proper-
ties of a given SAT formula without targeting any individ-
ual one. There are two avenues for further research. First,
the NetGAN learning algorithm can currently only handle
graphs with a few thousand nodes; we are thus unable to
generate very large SAT instances with tens or hundreds of
thousands of variables. It should however be noted that many
seemingly large industrial benchmarks undergo significant
shrinkage when pre-processed. Second, the generated for-
mulas are often easier to solve than the original real-world
formulas on which they are modeled, though this is also true
of comparable formulas generated by CA and PS. Neverthe-
less, we believe that our preliminary exploration of a graph-
based implicit SAT formula generator shows promise.

References
Ansótegui, C.; Bonet, M. L.; and Levy, J. 2009. On the structure
of industrial sat instances. In CP 2009, 127–141. Springer Berlin
Heidelberg.
Bojchevski, A.; Shchur, O.; Zügner, D.; and Günnemann, S. 2018.
NetGAN: Generating graphs via random walks. In ICML 2018,
volume 80, 609–618. PMLR.
Eén, N., and Biere, A. 2005. Effective preprocessing in sat through
variable and clause elimination. In SAT ’05, 61–75. Springer Berlin
Heidelberg.
Giráldez-Cru, J., and Levy, J. 2015. A modularity-based random
sat instances generator. In IJCAI ’15, 1952–1958. AAAI Press.
Giráldez-Cru, J., and Levy, J. 2017. Locality in random sat in-
stances. In IJCAI ’17, 638–644. AAAI Press.
Hoos, H. H., and Stützle, T. 2000. SATLIB: An online resource for
research on sat. In SAT ’00, 283–292. IOS Press.
Selman, B.; Kautz, H.; and McAllester, D. 1997. Ten challenges in
propositional reasoning and search. In IJCAI ’97, 50–54. Morgan
Kaufmann Publishers Inc.

207

